A Study of Leading Baryon and Antiproton Production in pA Collisions at the AGS

An Tai (UCLA) for the E941 Collaboration

- Motivation of the experiment
- Measurements in E941
- Preliminary results
- Conclusion

More details about the experiment, see posters given by B. Fadem and A. Rose

Motivation of the experiment

- Projectile fragmentation in pA
 resonance production; diquarkquark; diquark break etc.
 help to understand baryon stopping
 in AA
- Study isospin exchange reaction a large cross section for the leading neutron production
 RQMD p+Au at 19 GeV/c, 25% neutron
- Antiproton production and absorption

A unique experiment for studying leading baryon production in pA collisions at the AGS

- Measurement of both charged and neutral particles
- Large phase space coverage in the forward region and high data rate.
- E941: four targets (Be, Al, Cu, Pb) at 12 GeV/c and 19 GeV/c

J.K.Pope October 1, 1996

E864/E941 spectrometer.

Invariant Multiplicity Distribution

More protons are measured at large y than neutrons

 $E \frac{g^3 N}{g^3 p}$ of the leading baryon as a function of m_T for p+Be at 19 GeV/c.

Inverse Slope parameters at 19 GeV/c

rapidity	2.3	2.5	2.7	2.9	3.1	3.3
Neutron Be	123±4	118 ±6	124 ±4	116 ±3	104 ±3	79 ±2
Proton Be	137±8	137 ±5	130 ±4	127 ±4	108 ±1	88 ±2
Neutron Al	128 ±4	120 ±4	123 ±3	118 ±3	105 ±3	80 ±2
Proton Al	135 ±8	136 ±5	134 ±5	126 ±5	110 ±2	89 ±2
Neutron Cu	132 ±5	120 ±6	123 ±5	118 ±5	111 ±4	82 ±2
Proton Cu	137 ±8	136 ±5	136 ±5	132 ±6	112 ±3	90 ±2
Neutron Pb	126 ±3	118 ±6	124 ±5	119 ±6	112 ±5	82 ±1
Proton Pb	129 ±8	136 ±4	133 ±5	134 ±5	114 ±3	92 ±2

Jan. 14

dN/dy of proton and neutron

 $\mathrm{dN/dy}$ of neutron and proton for 4 targets at 19 GeV/c.

The p/n ratio may reflect collision dynamics

Jan. 14-21, 2001, Stony Brook

p/n ratio increases with rapidity

Ratio of proton to neutron as a function of rapidity for 4 targets at 19 ${\rm GeV/c}$.

Jan. 14-21, 2001, Stony Brook

✓ *x*+ distributions of the leading proton target dependence at the AGS and the CERN

✓ The energy scaling exists for the light target when X+>0.25

Comparing Data with Models

E941 data and RQMD_v2.3c prediction for p+Be and p+Pb at 19 GeV/c

A Sequential Collision Model

- The first collision =p+p a flat x distribution
- The rest of collision:power law energy loss

$$S_{\nu}(z) = \alpha z^{\alpha - 1} \quad \nu \ge 2$$

$$dy=1/a$$

Antiproton production and absorption

Phy. Rev C47, R1351(1993)

E802 at 14.6 GeV/c y = 1.3

Weak target dependence

Allaby data at 19 GeV/c 2.5<y<3.1

Strong target dependence

E941 can fill the gap 1.5<y<2.3

E864: antihyperon/antiproton is about 2.8 in Au+Pb at pt=0 and mid-rapidity

Important to investigate antiproton absorption in pA

Antiproton pt and rapidity distribution

Target Dependence at $P_T = 125 \text{ MeV/c}$

Jan. 14-21, 2001, Stony Brook

The target and energy dependence of antiproton production

Energy Scaling of Yields

Rapidity (y)

2

2.2

2.4

1.8

0.00

1.4

1.6

Comparing the target dependence of proton and antiproton

 $(dn/dy)_{pA}/(dn/dy)_{pBe}$ as a function of rapidity for proton and antiproton at 14.6 GeV/c and 19 GeV/c.

Filling the mid-rapidity with (dN/dy? pt)pPb/ (dN/dy? pt)pBe

 $(dN/dy)pPb/(dN/dy)pBe \stackrel{?}{\rightleftharpoons} (dN/dy? pt)pPb/(dN/dy? pt)pBe$

Conclusion

- E941 measured leading baryon and antiproton production in pA collisions at the AGS energies.
- The p/n ratio increases with rapidity, but shows no target dependence.
- The target dependence of the leading proton does not follow energy scaling for the heavy target from the AGS to the SPS.
- RQMD overestimates the E941 data of leading baryon production.

Conclusion

- In the large rapidity region (y>2.5) Allaby antiproton data show the same target dependence as E941 protons in pA interactions at 19 GeV/c.
- E941 data show strong antiproton absorption in the region of 1.5<y<2.3.